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Nulling interferometry uses destructive interference to suppress starlight in order 
to enhance the contrast of faint emission sources near the target star. Nulling can 
probe closer to stars than coronagraphy can, thus enabling unique observations of 
exozodiacal dust and faint companions inside the coronagraphic regime. Nulling 
has undergone numerous advances recently, both in optical implementation 
schemes, and in data analysis and calibration approaches, and this chapter 
provides an overview of the theory, techniques and requirements unique to nulling 
interferometry. It concludes with a mention of future possibilities. 

1.   Nulling Interferometry vs. Standard Astronomical Interferometry 

The goal of nulling interferometry1 (or, more simply, “nulling”) is to suppress 
starlight by destructively interfering the light collected by separate telescope 
apertures or sub-apertures. In general, nulling can differ from standard long-
baseline optical/infrared interferometry in several regards, including the beam 
combination approaches, the fringe measurement, tracking and stabilization 
methods, and the data processing and calibration techniques. The most basic 
difference arises from the fact that in normal astronomical interferometry, the 
determination of the fringe parameters (visibility and phase) is paramount, while 
the null fringe is typically used primarily to suppress starlight, so as to enhance the 
observability of much fainter off-axis emission. However, once the star is nulled, 
interferometry may or may not be used to determine the off-axis source parameters.  
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   For the rejection of starlight to be deep and stable, an achromatic “null fringe” 
must be kept fixed on the center of the star, which rules out the scanning of the 
fringe pattern. This means that rather than measuring the fringe visibility, V, i.e., 

 𝑉 = #$%&'#$()
#$%&*#$()

	,	 (1)	

where Imax and Imin are the fringe maximum and minimum, respectively, nullers 
usually measure a different but related fringe quantity, the null depth, N, given by2 

 𝑁 = #$()
#$%&

		.	 (2)	

The two are related via 

	 𝑉 = 	 3'4
3*4

	,					𝑜𝑟	𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑒𝑙𝑦,				𝑁 =	 3'>
3*>

		.		 (3)	

The advantage of N is that it directly measures the small quantity desired, i.e., the 
residual light leakage, whereas visibilities close to unity become difficult to 
distinguish from unity. In the small null depth limit, we have 

𝑉 ≈ 1 − 2𝑁,							𝑜𝑟	𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑒𝑙𝑦, 𝑁 ≈ 	 3'>
B
		.																														(4)	

As any light leakage will degrade the depth of the fringe minimum, the measured 
null depth will be astrophysically meaningful only if instrumental leakage terms 
are minimized and/or removed by calibration.  

Finally, we note that, as the nulling of astrophysical sources requires the 
cancellation of the incident fields to be relatively stable, nulling tends to be easier 
at longer wavelengths. Indeed, the first nulling observations were carried out in the 
microwave regime,3 with the first such observations being of the Sun, as was the 
case with coronagraphic observations. The nulling of other stars was first proposed 
for mid-infrared wavelengths,1 because exoplanets and exozodiacal light are both 
expected to be bright in the thermal infrared. A number of ground-based nullers 
aimed at the detection of thermal dust emission at mid-infrared wavelengths have 
now been deployed,4-7 and it has also proven possible to extend nulling 
observations to the near-infrared,8-10 by taking advantage of extreme adaptive 
optics systems for wavefront stabilization, and of the very much lower thermal 
background emission at those wavelengths.  

2.   Two-Beam Nulling 

The simplest case is two-beam nulling. To enable a fringe minimum that is both 
deep and broadband, the two incoming beams must be combined so as to 
simultaneously cancel the fields at all wavelengths in the observing passband, and 
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in both polarization states. For a high degree of cancellation after propagation 
down the respective optical beam trains, the fields at the beam combiner must be 
extremely well matched, implying both a high degree of symmetry (for matching, 
e.g., amplitudes and polarization states) and stability (to keep the relative phase 
between the beams fixed).  

  Regardless of the specific beam-combination technique used (see next 
section), a two-beam nuller combines a pair of beams in anti-phase, yielding linear 
on-sky fringes that are spaced in angle, as usual, by λ/b, where λ is the observation 
wavelength and b is the baseline length between the apertures, but with a central 
achromatic destructive fringe centered on the star (Fig. 1). The on-sky fringe 
transmission at any wavelength is then  

𝑡(𝜃F) =
3
B
G1 − 𝑐𝑜𝑠 HBIJKL

M
NO = 𝑠𝑖𝑛B HIJKL

M
N	,																										(5)	

where 𝜃F is the angle on the sky from the central null fringe in the direction 
perpendicular to the fringes. At large angles, the response is usually reduced (as 
illustrated in Fig. 1) because of coherence or transmission losses arising from a 
number of factors such as passband averaging,11 focal-plane beam combination,9,10 
and/or spatial filtering.12,13  

  With a nulling baseline that can be rotated around the line of sight, the 
response to a point source located at a radial angular offset from the central star of 
θS and an azimuth angle of 𝛼S is then 

 
𝑡U𝜃S, 𝛼V = 𝑠𝑖𝑛B HIJKW	XYZ	([W'[)

M
N	,                               (6a) 

 
where 𝛼 is azimuth angle of the baseline. Point source response curves for a full 
180° of baseline rotation for sources at angular radii of 0.25, 0.5, 0.75 and 1.0 times 
the fringe spacing are shown in Fig. 1, where it can be seen that point sources at 
larger radial offsets cause responses containing higher harmonics of the rotation 
frequency, because more fringes are crossed during the rotation. Frequency and 
phase analysis of the signal resulting from baseline rotation can thus be used to 
determine source locations.14,15,16 However, at small radial offsets, Eq. 6a reduces 
to  

 

𝑡U𝜃S, 𝛼V = HIJKW	XYZ	([W'[)
M

N
B
= 3

B
HIJKW

M
N
B
G1 + 𝑐𝑜𝑠 H2U𝛼S − 𝛼VNO	,       (6b) 

 
which has only a single frequency component at twice the baseline rotation 
frequency. Moreover, as the signal due to a point source is proportional to the 
product of its flux, Fp, with t, the small-angle signal is proportional to 𝐹S𝜃SB, 
implying a degeneracy at small angles between the source flux and angular offset. 
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Fig. 1. Second row: A cross-cut through the fringe transmission pattern of a monochromatic single-
baseline nuller (dotted line), and a more localized response (solid line) due to, e.g., reduced off-axis 
coherence or transmission. The null fringe is at the center of the fringe packet. Top row, left to right: 
Response vs. baseline rotation angle to point sources at radial offsets from the central star of λ/4b, 
λ/2b, 3λ/4b and λ/b. (The dash-dotted arrows originate roughly at the largest fringe phases reached 
during the rotation). Third row: Simulated null-depth data sequences for an astrophysical null depth, 
Na, of 0.01, a root-mean-square phase error of 0.1 radians, and mean phases corresponding to null 
offset leakages of No=0.00 (left panel) and 0.04 (right panel). (The two downward-pointing dashed 
arrows originate roughly at the fringe setpoints.) Bottom: null-depth probability density functions for 
an astrophysical null of 0.01, a root-mean-square phase error of 0.1 radians, and null offsets (due to 
phase setpoint errors) of 0.00, 0.01, 0.02, 0.03 and 0.04. The first and last of these curves correspond 
to the two simulated data sequences shown directly above, as indicated by the dashed arrows. 
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The response to extended sources is given by the convolution of the “nulled 

brightness distribution”13 (i.e., the product of the source brightness distribution 
with the fringe transmission pattern) with the single-aperture point-source 
response, which reduces to the integral of the product of the nulled brightness 
distribution with the centered single-aperture response in the case that spatial 
filtering is applied.4,5,12,13,17 Relating measured null depths to circumstellar disk 
parameters then requires modelling both the source structure and its coupling to 
the nuller’s response pattern.15,18-22 

  The simplest case of an extended source is a stellar disk. With a peak 
transmission of unity in the monochromatic case, the ideal null depth for a point 
source separated from the star by a small angle is given by Eq. 6b, and integration 
over a uniform stellar disk of small diameter θS yields a stellar null of 23 

𝑁Z = 	
I^

3_
HJK`
M	
N
B
.	 					(7)	

Including limb darkening, one gets10  
 

Nc = 	
d^

3_
HJKe
M
N
B H3'fghiN

H3'gjN
  ,                                      (8) 

 
where A(λ) is the limb darkening coefficient. In either case, it can be seen that a 
small stellar leakage requires a central null fringe much broader than the stellar 
diameter. Moreover, because starlight leakage through the null fringe increases 
quadratically toward the stellar rim (Eq. 6b), null depth measurements are sensitive 
to “edge effects”, and so are well suited to measurements of stellar diameters and 
limb darkening, and in principle can enhance limb spectra relative to the overall 
stellar disk.  

  As an example, with a baseline of 85 m, the erstwhile Keck Interferometer 
Nuller6,12,13 (KIN) had a fringe spacing of 24 mas at λ = 10 µm and a theoretical 
stellar null depth of ≈	10-3 on a 1 mas diameter star (the approximate diameter of 
a G star at 10 pc). On the other hand, with a baseline 6 times shorter (14.4 m), the 
Large Binocular Telescope Interferometer7,17,21 (LBTI) provides a 10 µm fringe 
spacing of roughly 140 mas and a stellar null depth of ≈	3 × 10-5 on the same type 
of star.  

  Applying the same definition of inner working angle (IWA) to a nuller as is 
applied to coronagraphs (i.e., the point at which 𝑡(𝜃) = ½) gives 

	 𝐼𝑊𝐴	 = 	 M
nJ
	.	 (9)	

Combining Eqs. 7 and 9 then yields  
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#pq
Ke

= 	 d
3_r4s

   ,                                                (10) 

showing that the IWA moves outward with improving stellar rejection. With a 
single-baseline nuller, there is thus necessarily a tradeoff between the inner 
working angle and angular resolution on the one hand (both proportional to b-1) 
and the stellar leakage (proportional to b2), due to the baseline length.  

  One advantage of nulling is that with sufficient accuracy it can enable 
measurements to be carried out with baselines much shorter than the baselines 
typically employed for long-baseline visibility measurements. The case of stellar 
diameter measurements provides a case in point. When using nulling to measure a 
star’s diameter, the accuracy of the diameter measurement is given by16  
 

𝛿𝜃u = 	
vM^

I^Ke

w4
J^

 ,                                           (11) 

 
where 𝛿𝑁 is the null-depth measurement accuracy. As the accuracy of a given 
star’s diameter measurement is proportional to 𝛿𝑁 𝑏B⁄ , a more accurate diameter 
measurement can be obtained either by increasing the baseline length, or by 
improving the null-depth measurement accuracy.  In fact, for a given 𝛿𝜃u, we have 
𝑏 ∝ √𝛿𝑁, i.e., the needed baseline length decreases as the square root of the null 
depth accuracy. This comparison is a bit oversimplified, as it leaves out factors 
such as the ability to vary baseline lengths, but nevertheless, the estimated baseline 
reduction can be quite sizable. For example, improving visibility or null depth 
accuracies from the 10-2 level to 10-4 implies that baselines can be reduced by 
roughly an order of magnitude, a factor large enough to take the needed baseline 
lengths from the separated-aperture regime (i.e., ~ 100 m) to lengths that can fit 
within the diameters of large existing and planned single-aperture telescopes (~ 5 
– 40 m). Indeed, high-accuracy near-infrared nulling between a pair of 
subapertures within the pupil of Palomar’s Hale telescope10,24 has enabled stellar 
diameter measurements with a baseline of only 3.4 m, which is shorter than the 
length of Michelson’s original stellar interferometer.25 With longer nulling 
baselines across larger telescope pupils, it is even possible to measure nearby main-
sequence stellar diameters (e.g., a G2 star at 10 pc would have a diameter-limited 
null depth of 3 x 10-3 at λ = 2 µm on a 28 m baseline). 

2.1.   Beam combination  

Considering the completely symmetric case of combining two identical beams 
with zero optical path difference between them at an ideal 50/50 beamsplitter, 
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symmetry and energy conservation demand that half the incident light should 
emerge from each side of the beamsplitter. However, as the reflected and 
transmitted fields that are superposed at each of the beamsplitter outputs have 
equal amplitudes (as a result of the assumed 50/50 split ratio), each of the two net 
output fields can only equal the single-beam input amplitudes, as is required by 
energy conservation, if there is a π/2 phase shift between the reflected and 
transmitted beams. Thus, symmetry and energy conservation together 
demand11,26,27 that ideal 50/50 beamsplitters must introduce π/2 phase shifts 
between their reflected and transmitted beams. As such, fringe minima occur only 
at non-zero optical path differences, resulting in minima that are chromatic. 
Conversion to an achromatic nuller thus requires the addition of an extra π/2 radian 
phase shift between the combining beams, since broadband cancellation requires 
an achromatic phase difference of π radians. The extra π/2 of phase can be supplied 
most simply by passage through unbalanced dielectric media4,5  (i.e., a longitudinal 
phase shift), or by making use of a second beamsplitter pass.28 The first of these is 
the method used by both the BracewelL Infrared Nulling Cryostat5 (BLINC) and 
the LBTI.7 Standard interferometric pupil-plane beam combination at a single 
beam splitter also typically includes an extra unbalanced reflection in one of the 
two beam trains to allow both polarization states to be co-phased simultaneously.27  

On the other hand, it is possible to have complete symmetry between the two 
beam trains if a relative phase shift of π radians is supplied upstream of either a 
dual-pass beamsplitter configuration,28 or a focal-plane combiner29,30 (next 
section). Several methods of directly introducing an achromatic π-radian phase 
shift exist,27 including, e.g., anti-symmetric periscopes, the Gouy through-focus 
phase, a half-period lateral grating translation, orthogonally oriented half wave 
plates, and geometric phase. A succession of polarizers can also be used to rotate 
polarization states into opposition, but at the cost of lower efficiency.  

   The beam intensity ratio is also affected by passage through a beamsplitter, 
as beamsplitter reflection and transmission coefficients are in general not equal. 
The fully-symmetric nuller employed by the KIN thus produced matched output 
intensities with a symmetric pair of beamsplitter passes in which both beams see 
the common product of the amplitude and reflection coefficients.28 Any of the 
intrinsic π phase shifters listed above can then be inserted ahead of a fully 
symmetric beam combiner to turn it into a nuller by providing the phase shift 
needed to turn the central constructive fringe into a destructive fringe. 

   However, all phase shifters have limitations - some are limited to providing 
only a single fixed value of the phase shift, and many provide chromatic phase 
shifts. Working under a fluctuating atmosphere or behind imperfect optical beam 
trains, the relative phase between two incoming beams will fluctuate randomly, 
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and will also very likely have a chromatic character. The former implies that a 
fixed phase shift will be inadequate. Moreover, beam amplitudes are likely to differ 
after propagation down a pair of different beam trains. Active control of amplitude 
and phase (the latter being carried out much more rapidly than the former), as well 
as dispersion correction must then be applied for deep, broadband nulling. 
Dielectric plates or wedges with net thicknesses adjustable by means of rotation or 
translation, respectively, can supply a variable phase shift, and together with an 
adjustable air path, can provide broadband dispersion correction.31 Residual 
dispersion could in principle be addressed by spectrally dispersed nulling – i.e., 
nulling a number of narrow spectral channels individually, as the residual 
dispersion in each resolution element will be lower than across the entire band of 
interest. The phase offsets from null likely to be present in the individual channels 
can then be dealt with either by an adaptive nuller32 that disperses the nulled light 
onto a deformable mirror that corrects each channel’s mean phase, or by the “null 
self-calibration” data analysis technique24 (Sec. 3.2), which can extract each 
channel’s true astrophysical null even in the presence of phase offsets.  

2.2.   Pupil-plane vs. focal-plane beam combination and the role of 
optical fibers 

The previous section was concerned primarily with classical beam combination 
involving free-space optics, in which the pupils of the two beams are superposed 
at a beamsplitter (Michelson interferometry). This approach is also referred to as 
coaxial beam combination,29 because the two beam axes coincide after beam 
combination. When nulling in the Michelson configuration, energy conservation 
implies that when one of the beamsplitter outputs is nulled, the other is bright. The 
bulk of the starlight is thus well-separated from the nulled output. On the other 
hand, two beams can instead be combined in the focal plane (Fizeau combination). 
This case is also referred to as multi-axial combination,29 because the beam axes 
don’t coincide. In this case, all of the starlight reaches the focal plane, with the null 
fringe in the center of the fringe pattern,30 and there are no separate nulling and 
constructive outputs. The bulk of the starlight thus remains in close proximity to 
the dark region. 

  Single-mode optical fibers can play important roles in both beam combination 
schemes, in the high Strehl ratioa regime. In coaxial combiners, an optical fiber 
located in a focal plane after beam combination can be used to filter out pupil-
plane wavefront irregularities, and thus improve null depths.33 In particular, the 

                                                   
a See Chapter 1 of this Volume. 
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presence of differing spatial aberrations in the two beams produces differently-
aberrated stellar point spread functions, leading to off-axis light leakage in the 
combined beam. Very close to the star, most important are pointing mismatches 
and low order wavefront errors. However, the only phase term that can propagate 
within a single-mode fiber is the piston phase difference between beams; all other 
pupil phase errors are filtered out. Even tip-tilt-related phase errors don’t propagate 
in the fiber; they are instead converted to amplitude errors by the dependence of 
fiber coupling on angle of arrival. A single-mode fiber coupled to the core of the 
point spread function (PSF) can thus improve stellar rejection considerably,33 but 
over a field of view restricted to the PSF core. In contrast, without a fiber, the 
available field of view is larger, but the null depths are likely to be more modest.  

   In the Fizeau configuration, the fringes across the focal-plane Airy disk imply 
that fine sampling would be needed to isolate the deepest part of the central null 
fringe, if no spatial filtering were applied. A single-mode fiber coupled to the focal 
plane Airy disk can thus play a critical role in the Fizeau case as well. First, a 
single-mode fiber can itself function as a beam-combiner, as a pair of focused 
beams can be coupled into the same fiber mode if both arrive within the fiber’s 
acceptance cone.29,30 Moreover, by including an upstream relative phase shift of π 
between the beams to be combined, the fiber-combiner becomes a nuller, because 
the resultant anti-phased pair of stellar electric fields produces an anti-symmetric 
focal-plane field distribution on the fiber input plane that cannot couple to the 
single-mode fiber’s symmetric propagation mode.29,30 However, while the on-axis 
starlight cannot couple to the fiber, off-axis emission arriving with a different 
phase shift can. Because of its relative simplicity, this type of “fiber nuller” was 
employed by the Palomar Fiber Nuller (PFN).9,10,16 

3.   Instrumental Limitations 

Thus far, only the case of an ideal, error-free, two-beam nuller has been discussed. 
However, in any real interferometer, a number of different types of imperfection 
can lead to an increased level of light leakage. Since the electric fields at the 
outputs of the two beam trains must cancel to high accuracy, i.e., 𝐸}3 + 𝐸}B𝑒~� ≈ 0, 
the fields must be matched in amplitude, phase, polarization rotation angle, 
retardance, and dispersion. For the case of monochromatic, single-polarization 
light, it can be shown that leakages linear in amplitude and phase errors vanish at 
null, leaving only smaller quadratic leakage terms.16 This minimum-noise 
condition is the reason for operating at null, although it does not apply if thermal 
background noise dominates. To avoid increased noise from other fringe phases, 
only intensities from the null phase can then be used. As a result, the null is best 
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calibrated using individual beam intensities rather than data from other fringe 
phases. 

  In the Michelson case, the null depth integrated over the combined beam pupil 
is given by  

𝑁 = 	𝑁BU𝑏�⃗ V + 𝑁�(𝑏) +	𝑁�	,	 																										(12)	

where the first term is the desired astrophysical signal due to non-stellar off-axis 
emission, the second is due to stellar leakage, and the third is due to any and all 
instrumental leakage terms, given in short by13 
 

𝑁� =
3
n
∑ 𝜀�B	,																																					                    (13) 

 
which is one quarter of the sum of the variances due to each of the possible leakage 
sources. In more detail, in an integration time, t, and in the absence of beam shear, 
the instrumental null is given by13,23 
 

𝑁~ = 	
3
n
U𝜙�B}}}} + 	𝜙�B}}}} + 	𝜙�

B}}}} +	𝜙�B}}}} +	𝛼B}}}} + 𝛿B}}}V	,																					(14)	

where the different terms give, in order, the spatial variance of the wavefront phase 
difference across the beam apertures, the temporal variance of the average phase 
difference within an integration time, the spectral variance of the dispersion across 
the passband, the variance of the retardance between the two polarization states, 
the variance of the residual polarization rotation angle between the beams, and the 
variance of the amplitude imbalance. Note that each of these variances is taken 
over a different variable, and the timescales involved can also be quite different, 
as some terms are relatively stable, while others can vary rapidly. 

3.1.   Phase errors 

Due to fluctuations in any of the quantities contributing to the instrumental null 
depth (Eq. 14), measured null depths will also fluctuate. And as the dominant error 
term is often phase fluctuations, accurate astrophysical null depth measurements 
will require stabilization of the relative phase between beams so as to stay at or 
near the bottom of the null fringe. However, because all fluctuations from the 
bottom of the null fringe lead to positive-definite increases in the null depth (Eqs. 
12 and 14), any time-average of a single-baseline null-depth measurement 
sequence will necessarily be biased upward, and thus would provide an inaccurate 
estimate of the astrophysical null depth, Na. Indeed, in the simplest case of only 
phase errors about the fringe minimum, a better estimate for Na would instead 
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simply be the minimum null depth present in a sequence, as can be seen in the left-
hand simulated null-depth measurement sequence in Fig. 1.  

   This can be seen in more detail by considering Gaussian phase noise, and 
neglecting all other error sources. In this case, the measured null, Nm, at any time 
is given by   
 

𝑁� = 𝑁� +	𝑁� = 	𝑁� +	H
�
B
N
B
,																																					(15)	

 
where Ni = (ϕ/2)2 is the quadratic instrumental phase-error contribution to the 
measured null depth. In this case, the mean null depth over a measurement 
sequence is given by16  
 

	𝑁�� 	= 𝑁� 	+	𝑁�� = 	𝑁� +	
��^

n
+

��
^

n
	,                               (16) 

 
where 𝜙}  is the mean phase offset from the perfect null phase of p radians (due to, 
e.g., an experimental set-point error), and 𝜎� is the root-mean-square phase 
fluctuation about the mean phase. As Eq. 1 6 shows, the average measured two-
beam null depth is always larger than the true astrophysical null depth because of 
two factors: the mean phase offset from null, and the variance of the phase 
fluctuations.  

  If the two positive bias terms in Eq. 16 were known or measured, they could 
be subtracted from the measured mean null depth to retrieve the astrophysical null. 
However, determining the two bias terms is non-trivial, especially as they are 
specified in terms of phase, rather than null depth, which depends on the square of 
the phase. However, after some manipulation16, the last equation can be recast in 
terms of the root-mean-square null-depth fluctuation, 𝜎�, as 
 

	𝑁�� = 	𝑁� +	
����*v��

^

n
	,                                   (17) 

 
using 

𝜎�B = 	
��
�*B��

^��^

v
	.																																														(18)	

Finally, inverting Eq. 17 gives the astrophysical null depth as 
 

𝑁� = 𝑁�� −	
����*v��

^

n
	  .                                 (19a) 
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In the absence of a mean phase offset error (i.e., for a perfect phase setpoint at the 
bottom of the null fringe), Eq. 19a simplifies to  
 

	𝑁� = 𝑁�� −
��
√B
	 .                                        (19b) 

 
In this case, both of the quantities on the right-hand side are directly calculable 
from a given null depth measurement sequence, as a result of which the 
astrophysical null can be determined directly from the data. On the other hand, in 
the opposite case of a phase offset but no fluctuations, Eq. 19a simplifies to 
 

 𝑁� = 𝑁�� −	
��^

n
	.																																													 (19c)	

 
From Eqs. 19a and 19c, it is clear that solving for the astrophysical null also 
requires accurate knowledge of the mean phase offset between beams during the 
measurement sequence. In the ideal case, the mean phase offset could be removed 
by observing, under identical conditions, a calibrator star with no astrophysical 
contribution to the null depth. However, in practice the mean phase offset is 
unlikely to remain unaltered from star to star.  

Before discussing how to determine the mean phase offset between the beams, 
it is important to note that Eq. 19a (and the simpler Eq. 19b) links the astrophysical 
null depth to the variance of the null-depth fluctuations.  In other words, in the 
absence of perfect stabilization at the bottom of the null fringe, the statistics of the 
null-depth fluctuations become integral to the determination of the astrophysical 
null depth. This is because of the underlying nonlinear fringe shape, which makes 
the character of the null depth fluctuations a function of the mean phase offset 
between the two beams. This is illustrated by the pair of simulated null-depth data 
sequences shown in Fig. 1, where one can see that all null-depth fluctuations are 
necessarily positive when starting from the bottom of the null fringe, while for 
other mean phase offsets, the null-depth can fluctuate in either direction. Indeed, 
it is the mean-phase-dependent character of the null-depth fluctuations that allows 
one to distinguish between a true astrophysical null-leakage signal and the null-
depth offset caused by a mean phase error (see Sec. 3.2).  

  However, what is the expected level of null depth fluctuations?  In the case of 
a phase setpoint exactly at null, converting the variance of the phase fluctuations 
in Eq. 18 to the variance of the optical path difference, σx, gives 

𝜎� = 	√2 H
I�&
M
N
B
.																																														(20)	
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Whether pathlengths between separated apertures are stabilized by a fringe tracker, 
or pathlengths between subapertures within a common telescope pupil by an 
adaptive optics system, σx ~ 100 nm can be chosen as representative, for which 
 

𝜎�	~	
�.3n
M��^

	,																																																										(21)	

where λµm is the observing wavelength in microns. From the point of view of phase, 
long wavelengths are thus clearly easier to null, as typical rms null depths (without 
further phase-stabilization steps) are predicted to be ~ 0.03 at K band (2.2 𝜇m), 
and ~ 10-3 at N-band (10 𝜇m). Note that the first value is roughly consistent with 
typical K-band visibilities of a few percent. Even deeper mean instrumental null 
depths thus require even finer phase control, such as phase-averaging over 
apertures larger than those of the wavefront sensor, or using shorter-wavelength 
fringe information to stabilize longer-wavelength fringes.34,35  

   However, the mean null depth and the variance of the null are not the full 
story, as one could presumably use only the deepest null depths in a sequence to 
delimit faint underlying astrophysical signals (i.e., “lucky” nulling). One must thus 
ask how often instrumental nulls of a given depth are expected to occur, and how 
much deeper than the mean null it is possible to probe effectively. For Gaussian 
phase fluctuations centered at the optimal null phase, the probability, p, of the null 
depth being below a given level Nx at any time is given by the error function  
 

𝑝(𝑁 < 𝑁¢) = 𝐸𝑟𝑓 GrB4&
�∅

O	.																																									(22)	

For the same 100 nm rms phase error as before, K band nulls of 10-1, 10-2, 10-3 and 
10-4 should thus be seen 97%, 50%, 17%, and 5% of the time, respectively, 
implying that nulls even two orders of magnitude deeper than the average null are 
present on the order of 10% of the time. At N band, the situation is again much 
more favorable, with phase fluctuations alone allowing 10-4 and 10-5 nulls 26% and 
8% of the time, respectively. Inclusion of other error terms, and of thermal infrared 
background noise will of course further limit performance.  

3.2.   The null-depth probability density function 

As null depths significantly deeper than the average null should thus appear 
regularly, the final step is to examine the expected frequency distribution of a set 
of null-depth measurements. In the simple case where only phase errors are 
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present, the probability that a given null depth measurement falls within a small 
range dN is given by  
 

𝑝(𝑁)d𝑁 =	∑𝑝(𝜑)d𝜑	,                                      (23) 
 
where the summation is over the two phases of opposite sign that yield identical 
null depths. As this equation translates the phase-fluctuation probability density 
function into the null-depth probability density function, this process can be 
inverted: i.e., with a measured null depth distribution, and either an assumed or a 
measured phase distribution function, the astrophysical null Na can be extracted by 
fitting the observed null-depth probability distribution.24,36,37 This procedure has 
been referred to as the “null self-calibration” (NSC) technique, because the nulling 
data stream (together with measurements of the individual beam intensities and the 
dark level) is itself used to extract the calibrated astrophysical null depth. For a 
quadratic relationship between phase and null-depth as in Eq. 15, and Gaussian 
phase fluctuations, Eq. 23 implies a null-depth probability density function of 
 

 𝑝(𝑁) =	�
B

I(4'4§)�∅^
	𝑒𝑥𝑝 H'B(4*4©'4§)

�∅^
N	 𝑐𝑜𝑠ℎ Gnr4©(4'4§)

�∅^
O	,					 (24)	

 
where No is the null-depth offset corresponding to the mean phase offset error. This 
one-sided function (Fig. 1) is non-zero only for N > Na, and initially drops sharply 
from an infinite asymptote at N = Na to higher values of N. This distinctively 
asymmetric function can be fitted to high accuracy to retrieve Na as well as the 
mean null-depth offset No, and the phase variance 𝜎�B. In the absence of a mean 
phase offset, Eq. 24 reduces to  
 

𝑝(𝑁) =	�
B

I(4'4§)�∅^
	𝑒𝑥𝑝 H'B(4'4§)

�∅^
N	,																								(25)	

which, as can be seen in Fig. 1, is a one-sided exponential-like function that 
approaches infinity at 𝑁 = 𝑁�. 

  The opposite case of small null-depth fluctuations, δN, about a much larger 
null-depth offset, No, is revealing. In particular, for δN << No, one can show that 
 

𝑝(𝛿𝑁) ≈ 3
rBI4©�∅^

𝑒𝑥𝑝 H'(w4)
^

B4©�∅^
N 𝑒𝑥𝑝 H (w4)j

n4©^�∅^
N ,																					(26)	
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where δN = N – Na – No. Moreover, in this limit, Eq. 18 reduces to 𝜎4B =	𝑁¬𝜎�B, 
so Eq. 26 becomes 

𝑝(𝛿𝑁) ≈ 3
rBI�­^

𝑒𝑥𝑝 H'(w4)
^

B�­^
N 𝑒𝑥𝑝 H (w4)j

n4©�­^
N ,																					(27)	

which is the product of a standard Gaussian probability distribution (with a center 
at 𝑁� + 𝑁¬ and a variance of 𝜎�B =	𝑁¬𝜎�B), with an exponential factor close to 
unity that introduces skewness: because the exponent in the latter factor changes 
sign with δN, the resultant probability density function is slightly asymmetric about 
its center, with positive excursions of a given magnitude being slightly more 
probable than negative excursions of the same size. This is because the quadratic 
dependence of null depth on phase near the fringe minimum means that adding a 
given phase fluctuation to the mean phase offset will alter the null depth by a larger 
amount than subtracting the same phase fluctuation would. Indeed, the non-linear 
relationship between the null depth and fringe phase makes it possible to determine 
all of the necessary parameters – the astrophysical null depth, Na, the variance of 
the null depth fluctuations,  𝜎4B, and the static null depth offset, No, that arises from 
the mean phase offset – by fitting measured probability density distributions to Eq. 
27. This would not be possible without the skewness factor present in Eq. 27, as a 
symmetric Gaussian function can be completely described by only two parameters 
– its center and width – and in this case, the center location depends only on the 
sum 𝑁� + 𝑁¬. However, the skewness factor in Eq. 27 has no dependence on 𝑁�, 
and so breaks this degeneracy.  

Interestingly, the underlying fringe non-linearity allows the retrieval of the 
astrophysical null depth even for null-depth measurement sequences that are offset 
significantly above the actual astrophysical null (e.g., the right-hand simulated data 
sequence of Fig. 1). In this “off-null” case, the null-depth fluctuations are amplified 
by the increasing fringe slope off the null (note that the second term in Eq. 18 
multiplies the phase fluctuation variance by the square of the fringe slope at the 
mean phase offset), leading to a broadening of the probability density distribution 
for larger mean-phase offsets (Fig. 1). Of course, once the mean null-depth offset 
is determined by a first observation sequence, it can be removed by applying the 
appropriate phase shift to bring the interferometer to null prior to further 
observations.  

Returning now to the general case of Eq. 24, the shape of the probability density 
distribution can be much more asymmetric (Fig. 1) than the limiting case of Eq. 
27, but the basic conclusions regarding the extraction of parameters still apply. 
Indeed, the NSC fitting technique is even more robust than suggested by this brief 
discussion, as use of the full NSC technique24,37 allows the retrieval of all of the 
dominant error terms, including, e.g., both amplitude and phase errors. As a result, 
the NSC algorithm has become the standard data reduction technique for both the 
PFN and the LBTI nullers.  
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  Finally, note that the NSC procedure for finding the true astrophysical null is 
akin to the coronagraphic “dark speckle” technique38 for exoplanet detection, in 
which speckle fluctuation minima are sought. Indeed, as the flux at any image point 
is determined by the interferometric combination of the beamlets from each of the 
AO system’s deformable mirror elements, the dark speckle technique is based on 
multi-beam interferometry rather than two-beam interferometry. The null self-
calibration technique and the dark speckle technique can thus be viewed as 
members of a family of related flux measurement techniques. 

4.   Multi-baseline Nulling 

Of course, a single-baseline nuller has limitations, including a rather slow rise in 
transmission from the central minimum. Moreover, in the thermal infrared regime, 
two bright signals need to be removed – the stellar flux and the thermal background 
(including zodiacal emission in the case of space missions) – but statically nulling 
a star does not remove the incoherent background. To separate off-axis 
companions and circumstellar dust emission from the background, some type of 
signal modulation is required, such as synchronized spatial chopping (as at the 
LBTI17,37), or phase modulation between nullers39,40 (as the KIN used12,13).  
However, the suppression of starlight requires keeping a given nuller’s phase fixed 
at null, which excludes the use of rapid phase modulation within a single-baseline 
nuller. These issues can all be addressed with interferometer configurations that 
make use of a larger number of input beams and baselines. Adding baselines can 
bring several improvements, including changing the shapes of the central null and 
the surrounding fringe pattern to provide a more rapid angular transition between 
the regions of deep starlight suppression and high off-axis transmission, 
decoupling the nulling parameters from the angular resolution to allow higher 
resolution observations of the residual light, and enabling rapid phase-modulation 
capabilities to separate the different signal types. 

   Because different baseline lengths correspond to different fringe frequencies, 
the incoming fields from multiple nulling baselines can be combined to generate a 
fringe pattern that has a broader central null and a more rapid transition to higher 
off-axis transmission.14 In particular, higher fringe frequencies can be added with 
amplitudes that lead to cancellation of the lowest order terms in the expansion of 
the fringe transmission vs. off-axis angle, yielding higher-order nulls with 
transmissions at small angles proportional to θ4 or θ6 instead of the basic θ2 null 
provided by a single baseline nuller.14,41 More-capable linear nulling arrays based 
on the use of more than two telescopes are thus possible, but for the space-based 
case, more telescopes implies additional complexity and a higher cost. Moreover, 
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higher-order nulling still requires fixed phases between the telescopes involved, 
thus again excluding phase modulation. Finally, some configurations also assume 
different field strengths for some of the combining beams, which implies either 
differently-sized collecting apertures, or a more complex, and potentially also 
inefficient, beam combiner. On the other hand, circular nulling arrays,42 which can 
be implemented with relative phases between telescopes of multiples of 2π/n, 
where n is the number of collecting telescopes, can make use of equal amplitudes, 
and can also provide equal pathlengths to a central beam combiner. The simplest 
of these is the three-element array.43,44 However, for a given number of telescopes, 
it has been shown that linear configurations can provide the highest-order nulls.45 
Many of these multi-aperture nulling-interferometer configurations were proposed 
as configurations for potential space-based nulling missions such as the Darwin 
interferometer46 and the Terrestrial Planet Finder Interferometer.47  

   Of course, not all of the baselines need to be involved in nulling the star, and 
different baselines can in fact play different roles, such as nulling on one set of 
baselines, and imaging the residual light with another set. In particular, shorter 
baselines can be used to provide deep stellar nulls, while longer baselines can be 
used to provide high resolution. Combining long and short baselines in a multi-
element nulling array can thus provide both desired attributes, and also a phase-
modulation capability, if an adjustable phase shift between different nulling 
baselines is provided.39,40,48 In the case of phase modulation between a pair of 
nulling baselines, the dominant noise terms shift to those due to correlated 
errors.12,13,48,49 A dual-nuller approach was used by the four-subaperture KIN6,12,13, 
although with the roles of the long and short baselines reversed.  

  Although higher-order nulling has yet to be implemented on the sky, it should 
be possible in the near future, as a wide variety of nulling configurations can be 
implemented in straightforward fashion within the pupil of a large ground-based 
telescope. Indeed, the upcoming 30m-class telescopes are large enough that 
multiple subapertures can be laid out within their pupils to create essentially any 
nulling-array configuration desired.16 In particular, different subapertures within a 
given telescope pupil can be arranged to provide different baseline lengths, 
different baseline orientations, differing field amplitudes from differently-sized 
subapertures, simulated baseline rotation, and phase-shifting between different 
baselines. As only one telescope is involved, the complexity then resides entirely 
in the beam combiner. However, multi-axial Fizeau combiners can simultaneously 
combine more than two beams,29 thus potentially keeping beam combiners 
manageable as well. 



18 F. Author & S. Author 

5.   Future possibilities 

To date, nulling interferometers have been implemented using both telescope 
subapertures and separate telescopes, and at both near-infrared and mid-infrared 
wavelengths. Based on the experience gained with these systems, it is worth asking 
what the future may hold for nulling. First, as has already been discussed, nulling 
behind an extreme adaptive optics system is very advantageous, as the AO system 
operates as the fringe tracker, considerably simplifying the nuller’s optical system. 
Fizeau combination can also allow a simple fiber-based beam-combiner for multi-
aperture systems. However, a further simplification is possible behind large 
telescopes: rather than building a specialized nulling beam-combiner, one can 
instead potentially implement a nulling mode within an already existing high-
contrast coronagraph. As coronagraphs typically include internal focal and pupil 
planes where coronagraphic masks are inserted, the coronagraphic masks in these 
planes could simply be replaced by nulling masks. For example, a pair of dielectric 
phase plates with a relative π phase shift between them, or a pair of “crossed” half 
wave plates that rotate electric fields into opposition could be inserted into a pupil 
plane.27 On the other hand, a phase grating that combines the +1 and -1 orders from 
the opposite sides of a telescope aperture could be inserted into a focal plane.50 In 
such a scenario, a separate nulling-interferometer optical bench is not required; 
instead, by inserting appropriate nulling masks into the coronagraphic focal and 
pupil planes, nulling can become one of a number of observational modes provided 
by a combined high-contrast coronograph/nuller. 

   This idea is particularly promising in regards to planned 30m-class 
telescopes, since it can extend the high contrast observational regime of such large 
telescopes further inward, to an IWA approaching λ/4D, well inside the typical 
coronagraphic IWA of ~ 1-3 λ/D. Nullers can thus be used to investigate both 
exoplanets and dust very close to stars, including the nature of the near-infrared 
interferometric visibility deficit seen around several nearby stars that has been 
attributed to hot inner dust,51 and to search for long-term radial velocity trend 
candidates52 inside the coronagraphic regime. Moreover, as an IWA of ~ λ/4D is 
on the order of a few milli-arcseconds in the near-infrared for 30 - 40 m telescopes, 
direct observation of hot Jupiters also becomes possible.  However, such small 
IWAs on long baselines would imply significant stellar leakage, thus potentially 
calling for multi-subaperture nulling. As mentioned earlier, multi-subaperture 
nulling configurations should be straightforward to implement on very large 
telescopes. Of course, large apertures in a ring-like configuration are a natural 
match to the large Giant Magellan Telescope subapertures.53 Longer wavelengths 
also favor larger subapertures from the viewpoint of signal-to-noise ratio. On the 
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other hand, filled-aperture telescopes provide more configuration flexibility, even 
allowing for the use of differently-sized subapertures. By taking advantage of 
planned instrumentation, such as large telescopes, extreme adaptive optics 
systems, and high-contrast coronagraphic benches, very cost-effective nulling 
interferometry on large telescopes may thus soon become feasible. 

6.   Summary 

While nulling interferometry is still a relatively new field, new optical techniques 
and data-analysis algorithms have enabled optical simplifications, stability 
relaxation, and substantial improvement in measurement accuracies.10,12,16,17,22,37 
This brief chapter could not address all of the issues related to nulling, and so has 
focused on the basics as much as possible. Many other topics and references have 
thus been omitted, such as the potential use of integrated optics,54 as well as the 
possibility of combining nulling with closure phase.55  

  Although implementing a nulling interferometer has heretofore tended to be 
rather involved, integrating nulling optics into existing and/or planned high 
contrast coronagraphs on large telescopes should allow considerable 
simplification, potentially converting nulling into an additional coronagraphic 
observing mode, thereby moving it more into the mainstream. Nullers also have 
significant observational potential, as a nuller on a 30m-class telescope should be 
able to make observations not only of hot and/or warm dust very close to nearby 
stars, but also of close companions, such as massive long-term radial-velocity trend 
candidates inside the coronagraphic regime, and the innermost known hot Jupiters. 
Nulling on large telescopes can also provide stellar observations such as main-
sequence stellar diameters and limb-enhanced spectroscopy. Thus, while space-
based nullers capable of providing mid-infrared exoplanet spectra remain in the 
future, ground-based nullers continue to progress.  

   
  This work was carried out at the Jet Propulsion Laboratory, California 

Institute of Technology, under contract with NASA. I thank M. Colavita, C. 
Lindensmith and B. Mennesson for comments and discussions. 
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